
1

SMD Ejaz
Assistant Professor
AITS, Rajampeta
WhatsApp: 9133915846

UNIT-III

SYSTEM DEVELOPMENT

System Concepts – Types of Systems – Modern Information Systems – System

Development Life Cycle – Completing the system development process - Modeling and

Design Systems: Structured and Object-Oriented Methodologies – Computer-Aided-

Software-Engineering (CASE), Alternative System-Building Approaches: Traditional

System life Cycle and Prototyping.

SYSTEM DEVELOPMENT

System Concepts

The term system is derived from the Greek word systema, which means an organized

relationship among functioning units or components. A system exists because it is designed

to achieve one or more objectives.

The study of systems concepts, then, has three basic implications:

1. A system must be designed to achieve a predetermined objective.

2. Interrelationships and interdependence must exist among the components.

3. The objectives of the organization as a whole have a higher priority than the

objectives of its subsystems. For example, computerizing personnel applications must

conform to the organization’s policy on privacy, confidentiality and security, as will

as making selected data (e.g. payroll) available to the accounting division on request.

Characteristics of a System

Organization

Organization implies structure and order. It is the arrangement of components that helps to

achieve objectives.

Interaction

Interaction refers to the manner in which each component functions with other components of

the system. In an organization, for example, purchasing must interact with production,

advertising with sales and payroll with personnel. In a computer system, the central

processing unit must interact with the input device to solve a problem. In turn, the main

memory holds programs and data that the arithmetic unit uses for computation. The

interrelationship between these components enables the computer to perform.

Interdependence

Interdependence means that parts of the organization or computer system depend on one

another. They are coordinated and linked together according to a plan. One subsystem

depends on the input of another subsystem for proper functioning: that is, the output of one

2

SMD Ejaz
Assistant Professor
AITS, Rajampeta
WhatsApp: 9133915846

subsystem is the required input for another subsystem. This interdependence is crucial in

systems work.

Integration

Integration refers to the holism of systems. Synthesis follows analysis to achieve the central

objective of the organization. Integration is concerned with how a system is tied together. It is

more than sharing a physical part or location. It means that parts of the system work together

within the system even though each part performs a unique function. Successful integration

will typically produce a synergistic effect and greater total impact than if each component

works separately.

Central objective

The last characteristic of a system is its central objective. Objectives may be real or stated.

Although a stated objective may be the real objective, it is not uncommon for an organization

to state one objective and operate to achieve another. The important point is that users must

know the central objective of a computer application early in the analysis for a successful

design and conversion. Political as well as organizational considerations often cloud the real

objective. This means that the analyst must work around such obstacles to identify the real

objective of the proposed change.

Elements of a System

In most cases, systems analysts operate in a dynamic environment where change is a way of

life. The environment may be a business firm, a business application, or a computer system.

To reconstruct a system, the following key elements must be considered:

1. Outputs and inputs.

2. Processor(s).

3. Control.

4. Feedback.

5. Environment.

6. Boundaries and interface

Outputs and Inputs

A major objective of a system is to produce an output that has value to its user. Whatever the

nature of the output (goods, services, or information), it must be in line with the expectations

of the intended user. Inputs are the elements (material, human resources, and information)

that enter the system for processing. Output is the outcome of processing. A system feeds on

input to produce output in much the same way that a business brings in human, financial, and

material resources to produce goods and services. It is important to point out here that

determining the output is a first step in specifying the nature, amount, and regularity of the

input needed to operate a system. For example, in systems analysis, the first concern is to

determine the user’s requirements of a proposed computer system – that is, specification of

the output that the computer is expected to provide for meeting user requirements.

3

SMD Ejaz
Assistant Professor
AITS, Rajampeta
WhatsApp: 9133915846

Processor(s)

The processor is the element of a system that involves the actual transformation of input into

output. It is the operational component of a system. Processors may modify the input totally

or partially, depending on the specifications of the output. This means that as the output

specifications change so does the processing. In some cases, input is also modified to enable

the processor to handle the transformation.

Control

The control element guides the system. It is the decision – making subsystem that controls the

pattern of activities governing input, processing, and output. In an organizational context,

management as a decision – making body controls the inflow, handling and outflow of

activities that affect the welfare of the business. In a computer system, the operating system

and accompanying software influence the behaviour of the system. Output specifications

determine what and how much input is needed to keep the system in balance.

Feedback

Control in a dynamic system is achieved by feedback. Feedback measures output against a

standard in some form of cybernetic procedure that includes communication and control.

Output information is fed back to the input and / or to management (Controller) for

deliberation. After the output is compared against performance standards, changes can result

in the input or processing and consequently, the output.

Feedback may be positive or negative, routing or informational. Positive feedback reinforces

the performance of the system. It is routine in nature. Negative feedback generally provides

the controller with information for action. In systems analysis, feedback is important in

different ways. During analysis, the user may be told that the problems in a given application

verify the initial concerns and justify the need for change.

Another form of feedback comes after the system is implemented. The user informs the

analyst about the performance of the new installation. This feedback often results in

enhancements to meet the user’s requirements.

Environment

The environment is the “supra-system” within which an organization operates. It is the source

of external elements that impinge on the system. In fact, it often determines how a system

must function. For example, the organization’s environment, consisting of vendors,

competitors, and others, may provide constraints and, consequently, influence the actual

performance of the business.

Boundaries and interface

A system should be defined by its boundaries – the limits that identify its components,

processes and interrelationship when it interfaces with another system. For example, a teller

system in a commercial bank is restricted to the deposits, withdrawals and related activities of

4

SMD Ejaz
Assistant Professor
AITS, Rajampeta
WhatsApp: 9133915846

customers checking and savings accounts. It may exclude mortgage foreclosures, trust

activities, and the like.

Systems analysts need to know several other important systems concepts such as:

 Decomposition

 Modularity

 Coupling

 Cohesion

Decomposition

Decomposition is the process of breaking down a system into its smaller components. These

components may themselves be systems (subsystems) and can be broken down into their

components as well. How does decomposition aid understand of a system? It results in

smaller and less complex pieces that are easier to understand than larger, complicated pieces.

Decomposing a system also allows us to focus on one particular part of a system, making it

easier to think of how to modify that one part independently of the entire system.

Decomposition is a technique that allows the systems analyst to:

 Break a system into small, manageable, and understandable subsystems

 Focus attention on one area (subsystem) at a time, without interference from other

areas

 Concentrate on the part of the system pertinent to a particular group of users, without

confusing users with unnecessary details

 Build different parts of the system at independent times and have the help of different

analysts

Modularity

Modularity is a direct result of decomposition. It refers to dividing a system into chunks or

modules of a relatively uniform size. Modules can represent a system simply, making it easier

to understand and easier to redesign and rebuild. For example, each of the separate subsystem

modules for the MP3 player in the above figure shows how decomposition makes it easier to

understand the overall system.

Coupling

Coupling means that subsystems are dependent on each other. Subsystems should be as

independent as possible. If one subsystem fails and other subsystems are highly dependent on

it, the others will either fail themselves or have problems functioning. Looking at the above

figure, we would say the components of a portable MP3 player are tightly coupled. The best

example is the control system, made up of the printed circuit board and its chips. Every

function the MP3 player can perform is enabled by the board and the chips. A failure in one

part of the circuit board would typically lead to replacing the entire board rather than

attempting to isolate the problem on the board and fix it. Even though repairing a circuit

board in an MP3 player is certainly possible, it is typically not cost-effective; the cost of the

5

SMD Ejaz
Assistant Professor
AITS, Rajampeta
WhatsApp: 9133915846

labor expended to diagnose and fix the problem may be worth more than the value of the

circuit board itself.

In a home stereo system, the components are loosely coupled because the subsystems, such as

the speakers, the amplifier, the receiver, and the CD player, are all physically separate and

function independently. If the amplifier in a home stereo system fails, only the amplifier

needs to be repaired.

Cohesion

Cohesion is the extent to which a subsystem performs a single function. In the MP3 player

example, supplying power is a single function.

TYPES OF SYSTEMS

The frame of reference within which one views a system is related to the use of the systems

approach for analysis. Systems have been classified in different ways. Common

classifications are:

1. physical or abstract,

2. open or closed, and

3. “man – made” information systems.

Physical or abstract systems

Physical systems are tangible entities that may be static or dynamic in operation. For

example, the physical parts of the computer center are the officers, desks, and chairs that

facilitate operation of the computer. They can be seen and counted; they are static. In

contrast, a programmed computer is a dynamic system. Data, programs, output, and

applications change as the user’s demands or the priority of the information requested

changes.

Abstract systems are conceptual or non-physical entities. They may be as straightforward as

formulas of relationships among sets of variables or models – the abstract conceptualization

of physical situations. A model is a representation of a real or a planned system. The use of

models makes it easier for the analyst to visualize relationships in the system under study.

The objective is to point out the significant elements and the key interrelationships of a

complex system.

Open or Closed Systems

Another classification of systems is based on their degree of independence. An open system

has many interfaces with its environment. It permits interaction across its boundary; it

receives inputs from and delivers outputs to the outside. An information system falls into this

category, since it must adapt to the changing demands of the user. In contrast, a closed

system is isolated from environmental influences. In reality, a completely closed system is

rare. In systems analysis, organizations, applications and computers are invariably open,

dynamic systems influenced by their environment.

6

SMD Ejaz
Assistant Professor
AITS, Rajampeta
WhatsApp: 9133915846

Man – Made Information Systems

Ideally, information reduces uncertainty about a state or event. For example, information that

the wind is calm reduces the uncertainty that the boat trip will be pleasant. An information

system is the basis for interaction between the user and the analyst. It provides instruction,

commands and feedback. It determines the nature of the relationships among decision-

makers. In fact, it may be viewed as a decision center for personnel at all levels. From this

basis, an information system may be defined as a set of devices, procedures and operating

systems designed around user-based criteria to produce information and communicate it to

the user for planning, control and performance. In systems analysis, it is important to keep in

mind that considering an alternative system means improving one or more of these criteria.

What is System Analysis and Design?

System analysis and design is a method used by companies ranging from IBM to PepsiCo to

Sony to create and maintain information systems that perform basic business functions such

as keeping track of customer names and addresses, processing orders, and paying employees.

The main goal of systems analysis and design is to improve organizational systems, typically

through applying software that can help employees accomplish key business tasks more

easily and efficiently. As a systems analyst, you will be at the center of developing this

software. The analysis and design of information systems are based on:

 Your understanding of the organization ‘s objectives, structure, and processes

 Your knowledge of how to exploit information technology for advantage

System Development Life Cycle

A software life cycle model (also called process model) is a descriptive and diagrammatic

representation of the software life cycle. A life cycle model represents all the activities

required to make a software product transit through its life cycle phases. It also captures the

order in which these activities are to be undertaken. In other words, a life cycle model maps

the different activities performed on a software product from its inception to retirement.

Different life cycle models may map the basic development activities to phases in different

ways.

System Development Life Cycle (SDLC) is a series of six main phases to create a hardware

system only, a software system only or a combination of both to meet or exceed customer’s

expectations.

1- System Planning

 The Planning phase is the most crucial step in creating a successful system, during this phase

you decide exactly what you want to do and the problems you’re trying to solve, by:

 Defining the problems, the objectives and the resources such as personnel and costs.

 Studying the ability of proposing alternative solutions after meeting with clients,

suppliers, consultants and employees.

 Studying how to make your product better than your competitors’.

7

SMD Ejaz
Assistant Professor
AITS, Rajampeta
WhatsApp: 9133915846

After analyzing this data, you will have three choices: develop a new system, improve the

current system or leave the system as it is.

2- System Analysis

The end-user’s requirements should be determined and documented, what their expectations

are for the system, and how it will perform. A feasibility study will be made for the project as

well, involving determining whether it’s organizationally, economically, socially,

technologically feasible. it’s very important to maintain strong communication level with the

clients to make sure you have a clear vision of the finished product and its function.

3- System Design

The design phase comes after a good understanding of customer’s requirements, this phase

defines the elements of a system, the components, the security level, modules, architecture

and the different interfaces and type of data that goes through the system.

A general system design can be done with a pen and a piece of paper to determine how the

system will look like and how it will function, and then a detailed and expanded system

design is produced, and it will meet all functional and technical requirements, logically and

physically.

4- Implementation and Deployment

This phase comes after a complete understanding of system requirements and specifications,

it’s the actual construction process after having a complete and illustrated design for the

requested system.

In the Software Development Life Cycle, the actual code is written here, and if the system

contains hardware, then the implementation phase will contain configuration and fine-tuning

for the hardware to meet certain requirements and functions.

In this phase, the system is ready to be deployed and installed in customer’s premises, ready

to become running, live and productive, training may be required for end users to make sure

they know how to use the system and to get familiar with it, the implementation phase may

take a long time and that depends on the complexity of the system and the solution it

presents.

5- System Testing and Integration

Bringing different components and subsystems together to create the whole integrated

system, and then Introducing the system to different inputs to obtain and analyze its outputs

and behavior and the way it functions. Testing is becoming more and more important to

8

SMD Ejaz
Assistant Professor
AITS, Rajampeta
WhatsApp: 9133915846

ensure customer’s satisfaction, and it requires no knowledge in coding, hardware

configuration or design.

Testing can be performed by real users, or by a team of specialized personnel, it can also be

systematic and automated to ensure that the actual outcomes are compared and equal to the

predicted and desired outcomes.

6- System Maintenance

In this phase, periodic maintenance for the system will be carried out to make sure that the

system won’t become obsolete, this will include replacing the old hardware and continuously

evaluating system’s performance, it also includes providing latest updates for certain

components to make sure it meets the right standards and the latest technologies to face

current security threats.

These are the main six phases of the System Development Life Cycle, and it’s an iterative

process for each project. It’s important to mention that excellent communication level should

be maintained with the customer, and Prototypes are very important and helpful when it

comes to meeting the requirements. By building the system in short iterations; we can

guarantee meeting the customer’s requirements before we build the whole system.

Many models of system development life cycle came up from the idea of saving effort,

money and time, in addition to minimizing the risk of not meeting the customer’s

requirement at the end of project, some of these models are SDLC Iterative Model,

and SDLC Agile Model.

Figure 1 System Development Life Cycle Phases:

http://en.wikipedia.org/wiki/Iterative_and_incremental_development
http://en.wikipedia.org/wiki/Agile_software_development

9

SMD Ejaz
Assistant Professor
AITS, Rajampeta
WhatsApp: 9133915846

THE CORE ACTIVITIES IN THE SYSTEMS DEVELOPMENT PROCESS

Introduction

New information systems are an outgrowth of organizational problem solving. A new

information system is built as a solution to some type of problem or set of problems the

organization perceives it is facing. The problem may be one in which managers and

employees realize that the organization is not performing as well as expected or that the

organization should take advantage of new opportunities to perform more successfully.

The activities that go into producing an information system solution to an organizational

problem or opportunity are called systems development. Systems development is a structured

kind of problem solved with distinct activities. These activities consist of systems analysis,

systems design, programming, testing, conversion, and production and maintenance.

Figure 2 illustrates the systems development process. The systems development activities

depicted usually take place in sequential order. But some of the activities may need to be

repeated or some may take place simultaneously depending on the approach to system

building that is being employed.

1. Systems Analysis

Systems analysis is the analysis of a problem that a firm tries to solve with an information

system. It consists of defining the problem, identifying its causes, specifying the solution, and

identifying the information requirements that must be met by a system solution.

The systems analyst creates a road map of the existing organization and systems, identifying

the primary owners and users of data along with existing hardware and software. The systems

analyst then details the problems of existing systems. By examining documents, work papers,

and procedures, observing system operations, and interviewing key users of the systems, the

analyst can identify the problem areas and objectives a solution would achieve. Often, the

solution requires building a new information system or improving an existing one.

Figure 2 The system development process

10

SMD Ejaz
Assistant Professor
AITS, Rajampeta
WhatsApp: 9133915846

Building a system can be broken down into six core activities

The systems analysis also includes a feasibility study to determine whether that solution is

feasible, or achievable, from a financial, technical, and organizational standpoint. The

feasibility study determines whether the proposed system is expected to be a good

investment, whether the technology needed for the system is available and can be handled by

the firm’s information systems specialists, and whether the organization can handle the

changes introduced by the system.

Normally, the systems analysis process identifies several alternative solutions that the

organization can pursue and assess the feasibility of each. A written systems proposal report

describes the costs and benefits, and the advantages and disadvantages, of each alternative. It

is up to management to determine which mix of costs, benefits, technical features, and

organizational impacts represents the most desirable alternative.

Establishing Information Requirements

Perhaps the most challenging task of the systems analyst is to define the specific information

requirements that must be met by the chosen system solution. At the most basic level, the

information requirements of a new system involve identifying who needs what information,

where, when, and how. Requirements analysis carefully defines the objectives of the new or

modified system and develops a detailed description of the functions that the new system

must perform. Faulty requirements analysis is a leading cause of systems failure and high

systems development costs. A system designed around the wrong set of requirements will

either have to be discarded because of poor performance or will need to undergo major

modifications.

Some problems do not require an information system solution but instead need an adjustment

in management, additional training, or refinement of existing organizational procedures. If

the problem is information-related, systems analysis still may be required to diagnose the

problem and arrive at the proper solution.

2. Systems Design

11

SMD Ejaz
Assistant Professor
AITS, Rajampeta
WhatsApp: 9133915846

Systems analysis describes what a system should do to meet information requirements, and

systems design shows how the system will fulfil this objective. The design of an information

system is the overall plan or model for that system. Like the blueprint of a building or house,

it consists of all the specifications that give the system its form and structure.

The systems designer details the system specifications that will deliver the functions

identified during systems analysis. These specifications should address all of the managerial,

organizational, and technological components of the system solution. Table 13.1 lists the

types of specifications that would be produced during systems design.

The Role of End Users

User information requirements drive the entire system-building effort. Users must have

sufficient control over the design process to ensure that the system reflects their business

priorities and information needs, not the biases of the technical staff. Working on design

increases users’ understanding and acceptance of the system. Insufficient user involvement in

the design effort is a major cause of system failure. However, some systems require more

user participation in design than others.

Figure 3 System Design Specification

3. Completing the Systems Development Process

12

SMD Ejaz
Assistant Professor
AITS, Rajampeta
WhatsApp: 9133915846

The remaining steps in the systems development process translate the solution specifications

established during systems analysis and design into a fully operational information system.

These concluding steps consist of programming, testing, conversion, production, and

maintenance.

3.1. Programming

During the programming stage, system specifications that were prepared during the design

stage are translated into software program code. Today, many organizations no longer do

their own programming for new systems. Instead, they purchase the software that meets the

requirements for a new system from external sources such as software packages from a

commercial software vendor, software services from a software service provider, or out-

sourcing firms that develop custom application software for their clients.

3.2. Testing

Exhaustive and thorough testing must be conducted to ascertain whether the system produces

the right results. Testing answers the question: Will the system produce the desired results

under known conditions? Some companies are starting to use cloud computing services for

this work.

The amount of time needed to answer this question has been traditionally underrated in

systems project planning. Testing is time-consuming: Test data must be carefully prepared,

results reviewed, and corrections made in the system. In some instances, parts of the system

may have to be redesigned. The risks resulting from glossing over this step are enormous.

Testing an information system can be broken down into three types of activities: unit testing,

system testing, and acceptance testing. Unit testing, or program testing, consists of testing

each program separately in the system. It is widely believed that the purpose of such testing is

to guarantee that programs are error- free, but this goal is realistically impossible. Testing

should be viewed instead as a means of locating errors in programs, by focusing on finding

all the ways to make a program fail. Once they are pinpointed, problems can be corrected.

System testing tests the functioning of the information system as a whole. It tries to determine

whether discrete modules will function together as planned and whether discrepancies exist

between the way the system actually works and the way it was conceived. Among the areas

examined are performance time, capacity for file storage and handling peak loads, recovery

and restart capabilities, and manual procedures.

Acceptance testing provides the final certification that the system is ready to be used in a

production setting. Systems tests are evaluated by users and reviewed by management. When

all parties are satisfied that the new system meets their standards, the system is formally

accepted for installation.

The systems development team works with users to devise a systematic test plan. The test

plan includes all of the preparations for the series of tests we have just described.

13

SMD Ejaz
Assistant Professor
AITS, Rajampeta
WhatsApp: 9133915846

3.3. Conversion

Conversion is the process of changing from the old system to the new system. Four main

conversion strategies can be employed: the parallel strategy, the direct cutover strategy, the

pilot study strategy, and the phased approach strategy.

In a parallel strategy, both the old system and its potential replacement are run together for a

time until everyone is assured that the new one functions correctly. This is the safest

conversion approach because, in the event of errors or processing disruptions, the old system

can still be used as a backup. However, this approach is very expensive, and additional staff

or resources may be required to run the extra system.

The direct cutover strategy replaces the old system entirely with the new system on an

appointed day. It is a very risky approach that can potentially be more costly than running

two systems in parallel if serious problems with the new system are found. There is no other

system to fall back on. Dislocations, disruptions, and the cost of corrections may be

enormous.

The pilot study strategy introduces the new system to only a limited area of the organization,

such as a single department or operating unit. When this pilot version is complete and

working smoothly, it is installed throughout the rest of the organization, either simultaneously

or in stages.

The phased approach strategy introduces the new system in stages, either by functions or by

organizational units. If, for example, the system is introduced by function, a new payroll

system might begin with hourly workers who are paid weekly, followed six months later by

adding salaried employees (who are paid monthly) to the system. If the system is introduced

by organizational unit, corporate headquarters might be converted first, followed by outlying

operating units four months later.

Moving from an old system to a new one requires that end users be trained to use the new

system. Detailed documentation showing how the system works from both a technical and

end-user standpoint is finalized during conversion time for use in training and everyday

operations. Lack of proper training and documentation contributes to system failure, so this

portion of the systems development process is very important.

3.4. Production and Maintenance

After the new system is installed and conversion is complete, the system is said to be in

production. During this stage, the system will be reviewed by both users and technical

specialists to determine how well it has met its original objectives and to decide whether any

revisions or modifications are in order. In some instances, a formal post-implementation audit

document is prepared. After the system has been fine-tuned, it must be maintained while it is

in production to correct errors, meet requirements, or improve processing efficiency. Changes

in hardware, software, documentation, or procedures to a production system to correct errors,

meet new requirements, or improve processing efficiency are termed maintenance. Routine

14

SMD Ejaz
Assistant Professor
AITS, Rajampeta
WhatsApp: 9133915846

maintenance consumes a large percentage of many firms’ IT budgets, but could be reduced

significantly through more up-to-date systems-building practices and technology. Table 13.2

summarizes the systems development activities.

Figure 4 Core systems development activities.

SOFTWARE DEVELOPMENT MODELS

Software development life cycle (SDLC) is a series of phases that provide a common

understanding of the software building process. How the software will be realized and

developed from the business understanding and requirements elicitation phase to convert

these business ideas and requirements into functions and features until its usage and operation

to achieve the business needs. The good software engineer should have enough knowledge on

how to choose the SDLC model based on the project context and the business requirements.

Classical waterfall model

The Waterfall Model was first Process Model to be introduced. It is also referred to as

a linear-sequential life cycle model. It is very simple to understand and use. In a waterfall

model, each phase must be completed fully before the next phase can begin. This type

of software development model is basically used for the for the project which is small and

there are no uncertain requirements. At the end of each phase, a review takes place to

determine if the project is on the right path and whether or not to continue or discard the

project. In this model software testing starts only after the development is complete.

In waterfall model phases do not overlap.

Figure 5 Classical Waterfall Model

https://melsatar.blog/2017/06/13/what-do-you-need-to-know-about-the-eight-software-development-phases/
http://istqbexamcertification.com/what-are-the-software-development-models/
http://istqbexamcertification.com/what-is-a-software-testing/

15

SMD Ejaz
Assistant Professor
AITS, Rajampeta
WhatsApp: 9133915846

Advantages of waterfall model:

 This model is simple and easy to understand and use.

 It is easy to manage due to the rigidity of the model – each phase has specific

deliverables and a review process.

 In this model phases are processed and completed one at a time. Phases do not

overlap.

 Waterfall model works well for smaller projects where requirements are very well

understood.

 Disadvantages of waterfall model:

 Once an application is in the testing stage, it is very difficult to go back and change

something that was not well-thought out in the concept stage.

 No working software is produced until late during the life cycle.

 High amounts of risk and uncertainty.

 Not a good model for complex and object-oriented projects.

 Poor model for long and ongoing projects.

 Not suitable for the projects where requirements are at a moderate to high risk of

changing.

When to use the waterfall model:

 This model is used only when the requirements are very well known, clear and fixed.

 Product definition is stable.

 Technology is understood.

 There are no ambiguous requirements

http://istqbexamcertification.com/what-is-a-software-testing/

16

SMD Ejaz
Assistant Professor
AITS, Rajampeta
WhatsApp: 9133915846

 Ample resources with required expertise are available freely

 The project is short.

Very less customer interaction is involved during the development of the product. Once the

product is ready then only it can be demoed to the end users. Once the product is developed

and if any failure occurs then the cost of fixing such issues are very high, because we need to

update everywhere from document till the logic.

Prototype Model

The basic idea in Prototype model is that instead of freezing the requirements before a design

or coding can proceed, a throwaway prototype is built to understand the requirements. This

prototype is developed based on the currently known requirements. Prototype model is

a software development model. By using this prototype, the client can get an “actual feel” of

the system, since the interactions with prototype can enable the client to better understand the

requirements of the desired system. Prototyping is an attractive idea for complicated and

large systems for which there is no manual process or existing system to help determining the

requirements. The prototype are usually not complete systems and many of the details are not

built in the prototype. The goal is to provide a system with overall functionality.

Figure 6 Prototype model

Advantages of Prototype model:

 Users are actively involved in the development

 Since in this methodology a working model of the system is provided, the users get a

better understanding of the system being developed.

 Errors can be detected much earlier.

 Quicker user feedback is available leading to better solutions.

 Missing functionality can be identified easily

 Confusing or difficult functions can be identified

 Requirements validation, Quick implementation of, incomplete, but functional,

application.

http://istqbexamcertification.com/what-are-the-software-development-models/

17

SMD Ejaz
Assistant Professor
AITS, Rajampeta
WhatsApp: 9133915846

Disadvantages of Prototype model:

 Leads to implementing and then repairing way of building systems.

 Practically, this methodology may increase the complexity of the system as scope of

the system may expand beyond original plans.

 Incomplete application may cause application not to be used as the full system was

designed Incomplete or inadequate problem analysis.

When to use Prototype model:

 Prototype model should be used when the desired system needs to have a lot of

interaction with the end users.

 Typically, online systems, web interfaces have a very high amount of interaction with

end users, are best suited for Prototype model. It might take a while for a system to be

built that allows ease of use and needs minimal training for the end user.

 Prototyping ensures that the end users constantly work with the system and provide a

feedback which is incorporated in the prototype to result in a useable system. They

are excellent for designing good human computer interface systems.

The Spiral Model

The spiral model is similar to the incremental model, with more emphasis placed on risk

analysis. The spiral model has four phases: Planning, Risk Analysis, Engineering and

Evaluation. A software project repeatedly passes through these phases in iterations (called

Spirals in this model). The baseline spiral, starting in the planning phase, requirements are

gathered and risk is assessed. Each subsequent spiral build on the baseline spiral.

Planning Phase: Requirements are gathered during the planning phase. Requirements like

‘BRS’ that is ‘Business Requirement Specifications’ and ‘SRS’ that is ‘System Requirement

specifications’.

Risk Analysis: In the risk analysis phase, a process is undertaken to identify risk and

alternate solutions. A prototype is produced at the end of the risk analysis phase. If any risk

is found during the risk analysis then alternate solutions are suggested and implemented.

Engineering Phase: In this phase software is developed, along with testing at the end of the

phase. Hence in this phase the development and testing are done.

Evaluation phase: This phase allows the customer to evaluate the output of the project to

date before the project continues to the next spiral.

Figure 7 Spiral model

http://istqbexamcertification.com/what-is-incremental-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-a-software-testing/

18

SMD Ejaz
Assistant Professor
AITS, Rajampeta
WhatsApp: 9133915846

Advantages of Spiral model:

 High amount of risk analysis hence, avoidance of Risk is enhanced.

 Good for large and mission-critical projects.

 Strong approval and documentation control.

 Additional Functionality can be added at a later date.

 Software is produced early in the software life cycle.

Disadvantages of Spiral model:

 Can be a costly model to use.

 Risk analysis requires highly specific expertise.

 Project’s success is highly dependent on the risk analysis phase.

 Doesn’t work well for smaller projects.

 When to use Spiral model:

 When costs and risk evaluation is important

 For medium to high-risk projects

 Long-term project commitment unwise because of potential changes to economic

priorities

 Users are unsure of their needs

 Requirements are complex

 New product line

 Significant changes are expected (research and exploration)

MODELING AND DESIGN SYSTEMS:

http://istqbexamcertification.com/what-are-the-software-development-life-cycle-phases/

19

SMD Ejaz
Assistant Professor
AITS, Rajampeta
WhatsApp: 9133915846

Modeling and Design Systems

Development Methodologies

The term software development methodology is used to describe a framework for the

development of information systems. A particular methodology is usually associated with a

specific set of tools, models and methods that are used for the analysis, design and

implementation of information systems, and each tends to favour a particular lifecycle model.

Often, a methodology has its own philosophy of system development that practitioners are

encouraged to adopt, as well as its own system of recording and documenting the

development process. Many methodologies have emerged in the past few decades in response

to the perceived need to manage different types of projects using different tools and methods.

Each methodology has its own strengths and weaknesses, and the choice of which approach

to use for a given project will depend on the scale of the project, the nature of the business

environment, and the type of system being developed. The following sections describe a

small number of software development approaches that have evolved over the years.

Structured Systems Analysis Methodology (SSADM)

Structured Systems Analysis Methodology (SSADM) is a highly structured and rigorous

approach to the analysis and design of information systems, one of a number of such

methodologies that arose as a response to the large number of information system projects

that either failed completely or did not adequately fulfil customer expectations.

Early large-scale information systems were often developed using the Cobol programming

language together with indexed sequential files to build systems that automated processes

such as customer billing and payroll operations. System development at this time was almost

a black art, characterised by minimal user involvement. As a consequence, users had little

sense of ownership of, or commitment to, the new system that emerged from the process. A

further consequence of this lack of user involvement was that system requirements were often

poorly understood by developers, and many important requirements did not emerge until late

in the development process, leading to costly re-design work having to be undertaken. The

situation was not improved by the somewhat arbitrary selection of analysis and design tools,

and the absence of effective computer aided software engineering (CASE) tools.

Structured methodologies use a formal process of eliciting system requirements, both to

reduce the possibility of the requirements being misunderstood and to ensure that all of the

requirements are known before the system is developed. They also introduce rigorous

techniques to the analysis and design process. SSADM is perhaps the most widely used of

these methodologies, and is used in the analysis and design stages of system development. It

does not deal with the implementation or testing stages.

SSADM is an open standard, and as such is freely available for use by companies or

individuals. It has been used for all government information systems development since

1981, when it was first released, and has also been used by many companies in the

expectation that its use will result in robust, high-quality information systems. SSADM is still

20

SMD Ejaz
Assistant Professor
AITS, Rajampeta
WhatsApp: 9133915846

widely used for large scale information systems projects, and many proprietary CASE tools

are available that support SSADM techniques.

The SSADM standard specifies a number of modules and stages that should be undertaken

sequentially. It also specifies the deliverables to be produced by each stage, and the

techniques to be used to produce those deliverables. The system development life cycle

model adopted by SSADM is essentially the waterfall model, in which each stage must be

completed and signed off before the next stage can begin.

SSADM techniques

SSADM revolves around the use of three key techniques that derive three different but

complementary views of the system being investigated. The three different views of the

system are cross referenced and checked against each other to ensure that an accurate and

complete overview of the system is obtained. The three techniques used are:

 Logical Data Modelling (LDM) - this technique is used to identify, model and

document the data requirements of the system. The data held by an organisation is

concerned with entities (things about which information is held, such as customer

orders or product details) and the relationships (or associations) between those

entities. A logical data model consists of a Logical Data Structure (LDS) and its

associated documentation. The LDS is sometimes referred to as an Entity Relationship

Model (ERM). Relational data analysis (or normalisation) is one of the primary

techniques used to derive the system's data entities, their attributes (or properties),

and the relationships between them.

 Data Flow Modelling - this technique is used to identify, model and document the

way in which data flows into, out of, and around an information system. It

models processes (activities that act on the data in some way), data stores (the storage

areas where data is held), external entities (an external entity is either a source of data

flowing into the system, or a destination for data flowing out of the system), and data

flows (the paths taken by the data as it moves between processes and data stores, or

between the system and its external entities). A data flow model consists of a set of

integrated Data Flow Diagrams (DFDs), together with appropriate supporting

documentation.

 Entity Behaviour Modelling - this technique is used to identify, model and document

the events that affect each entity, and the sequence in which these events may occur.

An entity behaviour model consists of a set of Entity Life History (ELH) diagrams

(one for each entity), together with appropriate supporting documentation.

SSADM's structured approach

Activities within the SSADM framework are grouped into five main modules. Each module

is sub-divided into one or more stages, each of which contains a set of rigorously defined

tasks. SSADM's modules and stages are briefly described in the table below.

21

SMD Ejaz
Assistant Professor
AITS, Rajampeta
WhatsApp: 9133915846

Table 1 The SSADM framework

Module Stage Description

Feasibility

Study

(module 1)

Feasibility

(Stage 0)

The high-level analysis of a business area to

determine whether a proposed system can cost

effectively support the business requirements

identified. A Business Activity Model (BAM) is

produced that describes the business activities and

events, and the business rules in operation. Problems

associated with the current system, and the additional

services required, are identified. A high-level data

flow diagram is produced that describes the current

system in terms of its existing processes, data stores

and data flows. The structure of the system data is

also investigated, and an initial LDM is created.

Requirements

Analysis

(module 2)

Investigation of

Current

Environment

(stage 1)

The systems requirements are identified and the

current business environment is modelled using data

flow diagrams and logical data modelling.

Business System

Options

(stage 2)

Up to six business system options are presented, of

which one will be adopted. Data flow diagrams and

logical data models are produced to support each

option. The option selected defines the boundary of

the system to be developed.

Requirements

Specification

(module 3)

Definition of

Requirements

(stage 3)

Detailed functional and non-functional requirements

(for example, the levels of service required) are

identified and the required processing and system data

structures are defined. The data flow diagrams and

logical data model are refined, and validated against

the chosen business system option. The data flow

diagrams and logical data model are then validated

against the entity life histories, which are also

produced during this stage. Parts of the system may

be produced as prototypes and demonstrated to the

customer to confirm correct interpretation of

requirements and obtain agreement on aspects of the

user interface.

Logical System

Specification

Technical

System Options

Up to six technical options for the development and

implementation of the system are proposed, and one

22

SMD Ejaz
Assistant Professor
AITS, Rajampeta
WhatsApp: 9133915846

(module 4) (stage 4) is selected.

Logical Design

(stage 5)

In this stage the logical design of the system,

including user dialogues and database enquiry and

update processing, is undertaken.

Physical Design

(module 5)

Physical Design

(stage 6)

The logical design and the selected technical system

option provide the basis for the physical database

design and a set of program specifications.

SSADM is well-suited to large and complex projects where the requirements are unlikely to

change significantly during the project's life cycle. Its documentation-oriented approach and

relatively rigid structure makes it inappropriate for smaller projects, or those for which the

requirements are uncertain, or are likely to change because of a volatile business

environment.

Object-Oriented Methodologies

Object-oriented Life Cycle Model in Software Engineering

The object-oriented life cycle model considers 'objects' as the basis of the software

engineering process. The development team starts by observing and analyzing the system

they intend to develop before defining the requirements. Once the process is over, they focus

on identifying the objects of the system. Now, an object could be anything; it can have a

physical existence like a customer, car, etc. An object also constitutes intangible elements

like a process or a project.

Advantages of Object-Oriented Life Cycle Model

Apart from enhancing the system performance, object-oriented programming offers some

advantages such as:

 Since it is data-focused and easy to work with problem domains.

 It uses encapsulation and data hiding process that allows a developer to build tamper-

proof systems.

 It enables software modularity, making it easier to manage and maintain complex

software.

 It allows developers to create new modules using existing models, saving time and

development cost of organizations.

The primary objectives of the Object-Oriented Model

 Object-oriented Analysis

 Object-oriented Design

23

SMD Ejaz
Assistant Professor
AITS, Rajampeta
WhatsApp: 9133915846

 Object-oriented Implementation

Object-Oriented Analysis (OOA)

The object-oriented analysis consists of the process where a development team evaluates the

system and organizes the requirements as objects. Contrary to traditional structural analysis,

the OOA heavily depends on advanced data like Use Cases and Object Models.

Use case

Use Cases are written descriptions about how users will behave when they enter your website

or application. It comprises the goals of each user from the point of their entry to exit.

Object Model

An object model allows the development team to create an architectural software or system

model before implementing or programming. It helps in defining a software/system in objects

and classes. It informs the developers about

 Interaction between different models

 Inheritance

 Encapsulation

 Other types of object-oriented interfaces

The OOA starts with analysing the problem domain and produce a conceptual model by

thoroughly evaluating the information in the given area. There is an abundance of data

available from various sources like:

 Formal document

 Requirement statements

 Primary data collected through stakeholders

Once the analysis is complete, the development team prepares a conceptual model describing

the system's functionalities and requirements.

Object-oriented Design

It is the next development stage of the object-oriented life cycle model where the analysts

design the desired system's overall architecture. The system is divided into a set of interacting

subsystems. The analyst considers the specifications from the system analysis. It all about

evaluating what the end-users expect from the new system.

As per the object-oriented design, the system is considered a collection of objects, with each

object handling a specific state data. For example, in banking software, each account may

feature some exclusive objects with separate data and functions.

24

SMD Ejaz
Assistant Professor
AITS, Rajampeta
WhatsApp: 9133915846

The philosophy behind an object-oriented design is to create a set of interacting objects as

seen in the real world. Instead of process-based structural programming, developers create

objects through data structures.

Each programming language comes with several data types, with each type comprising

various variables. Similarly, objects also feature certain predefined data types.

Useful definitions for Object-oriented design

Class

A class refers to a collection of similar objects. It is created as a blueprint to define variables

and methods that share certain similarities with objects.

As stated above, an object-oriented design bears resemblances with the real world. Let's say

you have purchased a smartphone. Now, your smartphone is just one of the several

'smartphones' available in the world. We can consider 'smartphones' as a class of objects, and

your smartphone object is an instance of a class of objects. Smartphones feature many states

(operating System, RAM, and motherboard) and behaviour (play music, call, messaging) in

common. However, the state of each smartphone is independent and can be different from other

smartphones.

While manufacturing smartphones, manufacturers can use the exact blueprint to build many

smartphones as they share common characteristics. This allows manufacturers to create new

blueprints more efficiently.

Likewise, in object-oriented programming, developers can use many similar objects to create

blueprints. This is called a class.

Abstraction

Abstraction is the essence used by developers to build classes. Developers observe a set of

similar objects and characteristics of importance to define classes. Abstractions are divided

into two parts- global abstractions and local abstractions.

Global abstractions are static, providing one interface to users for a limited time. Meanwhile,

Local abstractions are responsible for providing a view based on user/developer's

requirements.

The abstraction of objects varies as per the application. For example, while defining a

smartphone class of users, developers might set attributes like color, features, price, etc.

However, for manufacturing firms, developers may set attributes containing such as the

manufacturing costs per smartphone, quality control, turnaround, etc.

Inheritance

The concept of inheritance in object-oriented design defines the process of reusing 'objects.'

Developers can define a new class type using a similar existing class.

25

SMD Ejaz
Assistant Professor
AITS, Rajampeta
WhatsApp: 9133915846

For example, hatchbacks, sedans, SUVs, and 4wds are all a form of motor vehicles. So, as per

object-oriented programming, we can refer to hatchbacks, sedans, SUVs, etc., as subclasses

of the motor vehicle class. Similarly, the motor vehicle class is the superclass of the

subclasses.

Now, each subclass (sedans, hatchback, SUVs) inherits some states (speed, cadence, etc.),

methods, and behaviors (braking, changing gear) of the superclass. However, the state and

behaviors of subclasses are not limited to what has been provided to them by the superclass.

Developers can add variables and methods to subclasses as required.

Object-oriented Implementation

In this phase, developers translate the class objects and the interrelationships of classes and

code them using a programming language. This is the phase to create databases and establish

functionalities for the system.

The object-oriented methodology focuses on identifying objects in the system. Developers

closely observe each object to identify characteristics and behavioral patterns. The developers

ensure that the object recognizes and responds perfectly to an event.

Let's consider a smartphone screen as an object and the touch on a specific icon as an event.

Now, when the user touches an icon, the screen opens up an application. This means the

smartphone screen (object) responds to the event (touch) by opening an application.

The object-oriented implementation methodology supports three basic models

Object Model − It describes the objects and their interrelationships. This model observes

objects as static and discards their dynamicity.

Dynamic Model − This model focuses on the changes in states of various objects related to

specific events.

Functional Model − This describes the changes in the flow of data throughout the system.

The object model describes the essential elements of a system. When all the models are

combined, it represents the complete function of the system.

RAPID APPLICATION DEVELOPMENT (RAD)

Rapid application development (RAD) is an iterative and incremental software development

process that is designed to produce software as quickly as possible. The term tends to refer to

a range of techniques geared to the rapid development of applications, such as the use of

various application development frameworks. RAD was an early response to more structured

and formal approaches like SSADM which were not felt to be appropriate for projects

undertaken within a highly volatile and evolving business environment.

The philosophy behind RAD is that there is an acceptable trade-off between the speed of

development and the overall functionality or performance of the software delivered. Put

another way, RAD can deliver a working solution that provides 80% of the required

26

SMD Ejaz
Assistant Professor
AITS, Rajampeta
WhatsApp: 9133915846

functionality in 20% of the time required by more traditional approaches. Two major benefits

of this approach are that the customer gets to see results very quickly, and that a production

version of the software will be available within a relatively short time frame, greatly reducing

the likelihood that the customer's business environment will have undergone significant

change by the time the new system is delivered. The down side is that some of the desirable

(but non-essential) features of the software may be sacrificed in order to speed development,

and the performance of the resulting system, while acceptable, may not be optimal. System

acceptance is based upon the system achieving the agreed minimum functionality and

usability.

A RAD team is usually small (maybe six or so people including developers and users), and

developers are usually required both experienced and multi-skilled, since they will be

combining the role of analyst, designer and programmer. The project begins with an

initial Joint Application Development (JAD) meeting during which developers and customer

representatives determine the initial requirements of the system and agree a time frame in

which a prototype system will be ready. The developers design, build and test a prototype

system that reflects these initial requirements. The customer then evaluates the prototype

system to determine how far it meets their requirements, and what functionality or features

need to be improved or added.

A focus group meeting then takes place, during which the customer reports back to the

development team. The requirements specification is revised to incorporate new features and

improvements, and the time frame for the next iteration is agreed. Features that are deemed to

be of secondary importance may, by negotiation, be dropped from the new requirements

specification if they will negatively impact on the time frame for the new prototype. The

cycle of iterations and focus group meetings continues until a final prototype is accepted by

the customer as a production version of the new system.

Figure 8 The Rapid Application Development life cycle

27

SMD Ejaz
Assistant Professor
AITS, Rajampeta
WhatsApp: 9133915846

The "time box" in which an iteration occurs is short (usually from a few days up to about

three weeks). Documentation of requirements and design documentation is usually restricted

to notes taken from meetings, rather than the formal documentation associated with more

structured methodologies, and will consist of the minimum documentation required to

facilitate the development and maintenance of the system. The entire life cycle is relatively

short (usually a few months), and should result in a steady convergence between the

customer's concept of the new system and that of the development team, resulting in a

workable business solution that is fit for its intended purpose.

One of the benefits claimed for RAD was that, because customers often had only a vague

idea of what they wanted, the availability of a working prototype would help to crystalise

their thoughts in this respect and enable them to evolve a more definitive set of requirements.

Whereas some system development methodologies attempted to determine the complete set

of requirements in advance in an attempt to eliminate future changes to the scope of the

project, RAD was able to incorporate change as part of an evolutionary development process.

RAD leveraged the benefits of a number of software development tools in order to speed up

the development process, including a range of computer aided software engineering (CASE)

tools. Code re-use, the use of object-oriented programming languages, and the utilisation of

third-party software components were all embraced by RAD developers. Fourth generation

visual programming languages, the forerunners of today's integrated development

environments (IDEs) were used to create the graphical user interface (GUI), while code

production was further speeded through the use of an appropriate application programming

interface (API) that provided much of the base code for the application.

RAD tended to be used successfully for projects that did not have a high degree of criticality,

and where the trade-off between a short time frame for development on the one hand, and

quality and performance on the other, was acceptable. It was not suitable for systems where

28

SMD Ejaz
Assistant Professor
AITS, Rajampeta
WhatsApp: 9133915846

optimal performance was required, or that must interoperate with existing systems. The

flexibility of RAD lay in the ability to produce results quickly and adapt specifications to

meet an evolving set of customer requirements. From the customer's point of view, seeing a

working prototype early on in the proceedings helped them to focus on what they did or didn't

want from the system, and the continuing dialogue with the development team meant that

developers had a good understanding of the customer's requirements.

The speed of development and the relatively small size of development teams tended to result

in reduced development costs, although the absence of classic project milestones sometimes

made it difficult to accurately measure progress. Today, some of the principles of RAD have

been adopted by practitioners of agile development methods, themselves a response to an

increasingly volatile business environment.

Agile software development

Agile software development refers to a group of loosely related software development

methodologies that are based on similar principles. Notable examples include the Unified

Software Development Process (USDP) and Extreme Programming (XP). Agile

methodologies are characterised by short life-cycle iterations (typically measured in weeks),

with minimal planning and documentation. The goal is to deliver working software to the

customer at the end of each cycle. Each iteration involves a number of phases including

planning, requirements analysis, implementation, and testing. This incremental, iterative

approach helps to reduce overall risk, while enabling the output of the project to be adapted

to meet changing requirements or circumstances. Documentation is generally limited to what

the customer requires. Agile methodologies have evolved as an alternative to more

traditional, process-driven methodologies.

The emphasis is on frequent (usually daily) face-to-face communication within the project

team, and between the project team and the customer. Written documentation is of secondary

importance, and meetings are usually formal but brief. Project teams are typically small

(usually less than a dozen people) to facilitate communication and collaboration. Where agile

methods are applied to larger projects, the different parts of a project may be allocated to

several small teams of developers.

Each iteration of the project life cycle results in the production of working software, which is

then evaluated by the customer before the next iteration begins. The production of working

software, rather than the completion of extensive project documentation, is seen as the

primary measure of progress. The software produced at the end of an iteration has been fully

developed and tested, but embodies only a subset of the functionality planned for the project

as a whole. The aim is to deliver functionality incrementally as the project progresses. Further

functionality will be added, and existing features will be refined, throughout the life of the

project.

Agile methods are favoured over more structured methodologies for projects where

requirements are not initially well defined, or are likely to change over the lifetime of the

29

SMD Ejaz
Assistant Professor
AITS, Rajampeta
WhatsApp: 9133915846

project. They work well where the project team is small, and comprised of experienced

developers. Both the project management techniques and the development tools used are

selected on a project-by-project basis, allowing the overall process to be tailored to the needs

of a particular project. The short duration of iterations and the absence of a rigid set of

requirements or design documentation allow developers to respond quickly to changing

requirements and circumstances. The emphasis on constant interaction between customers

and developers provides continual feedback that helps to keep the project on track.

Agile methods are not so well suited to large-scale projects where the requirements are well

defined, where the business environment is relatively non-volatile, or where the predominant

organisational culture is intolerant of a lack of structure or documentation. The emphasis on

frequent face-to-face communication as an essential element of the development process

means that agile methods do not lend themselves easily to projects that are distributed over a

wide geographical area, or that require large teams of developers. Critics of agile methods

have also pointed out the difficulties that may arise in terms of negotiating a contract or

determining the cost of a project where the scope of the project is not initially well-defined,

and requirements are unclear.

Unified Software Development Process (USDP)

The Unified Software Development Process (USDP) is an iterative and incremental software

development process framework which, it is claimed, can be adopted for the development of

both small- and large-scale information systems. The development cycle is divided into four

main phases:

 Inception - this is usually a fairly short phase that is primarily used to establish the

scope and objectives of the project. It lays down both the overall aims and the specific

functional objectives, such as being able to log into and out of the system. These

specific functional objectives are referred to as use cases. The phase will also identify

one or more candidate architectures for the system, identify risks, and determine a

preliminary project schedule and cost estimate. The end of the inception phase is

marked by the Objective milestone.

 Elaboration - in this phase, most of the system requirements, the known risks, and the

system architecture are established. Use case diagrams, conceptual

diagrams and package diagrams are created. A partial implementation of the system

is produced in a series of short, time-boxed iterations that includes the core

architectural components, and establishes an executable architecture baseline. The

other deliverable from this phase is a blueprint for the next phase

(the construction phase) that includes estimates of the cost and the time required for

completion. The end of the elaboration phase is marked by the Architecture milestone.

 Construction - the remaining parts of the system are built on the foundations laid

down in the previous phase in a series of short, time-boxed iterations, each resulting

in a software release. A number of common Unified Modelling Language (UML)

30

SMD Ejaz
Assistant Professor
AITS, Rajampeta
WhatsApp: 9133915846

diagrams are used during this phase for the purpose of specifying visualising,

constructing and documenting the system. The end of the construction phase is

marked by the Initial Operational Capability milestone.

 Transition - the system is deployed to its operational environment and user

community. Feedback from an initial release may lead to further iterations within the

transition phase that incorporate further refinements to the system. This phase may

also include activities such as data conversion and user training. The end of the

transition phase is marked by the Product Release milestone.

The system architecture describes the various functional subsystems that make up the system,

such as those responsible for handling input and output, data communications, and

information reporting, and the interactions between them and the rest of the system. A risk is

any obstacle to success (e.g. insufficient or inexperienced personnel, lack of funding, or

severe time restrictions. Each iteration results in a single release of the system, although there

can be one or more intermediate builds within a single iteration. The feedback from each

release is used to shape future iterations.

The unified process defines six core process disciplines:

 Business modelling

 Requirements

 Analysis & Design

 Implementation

 Testing

 Deployment

Most iterations will include some work in most of the process disciplines. The relative

emphasis placed on each activity, and the effort it requires, will change over the course of the

project. This is illustrated by the following diagram.

31

SMD Ejaz
Assistant Professor
AITS, Rajampeta
WhatsApp: 9133915846

The Unified System Development Process lifecycle

Extreme Programming

Extreme Programming (or XP) is an agile software development methodology that takes

traditional software engineering practices to "extreme" levels to achieve a development

process that is more responsive to customer needs than traditional methods, while creating

good quality software. Changing requirements are seen as an inescapable feature of software

development projects in an increasingly unpredictable business environment. XP

Practitioners believe that a software development methodology that embodies the capacity to

adapt to changing requirements is a more realistic approach than trying to define all of the

requirements at the start of a project. Rapidly-changing requirements demand shorter

development life-cycles, and are incompatible with traditional methods of software

development.

Individual developers are assigned specific tasks, and are responsible for their completion.

No code is written until unit tests have been designed for individual code components and

subsystems. The customer is responsible for defining appropriate acceptance tests that are

subsequently used to validate the software produced during an iteration. At the end of an

iteration, the development team delivers a working system to the customer. The system may

not be complete, but all functionality implemented works. A further meeting is scheduled to

plan the next iteration, and the cycle begins again.

The Extreme Programming methodology encompasses a set of values, principles and

practices designed to facilitate the rapid development of high-quality software that satisfies

customer requirements.

The twelve core practices of XP are described below.

 The planning game - the development team collaborates with the customer to

produce working software as quickly as possible. The customer produces a list of the

32

SMD Ejaz
Assistant Professor
AITS, Rajampeta
WhatsApp: 9133915846

required system features, each described in a user story, which gives the feature a

name and outlines its functionality. User stories are typically written on index cards.

The development team estimates the effort required to code each story, and how much

effort the team can produce in a single iteration. The customer decides which user

stories to implement, and in what order, as well as how often to produce a production

release of the system.

 Small releases - the first iteration produces a working software release that embodies

the functionality identified by the customer as being the most essential. Subsequent

iterations add additional features as requested by the customer. Iterations are of fixed

length (typically from two to three weeks).

 System metaphor - each project has an organising metaphor, which provides an easy

to remember naming convention.

 Simple design - the simplest possible design is used that will satisfy customer

requirements. Because of the high probability of changes to requirements, only

currently known requirements will be considered.

 Test driven development - unit tests are written by developers to test functionality as

they write code. Acceptance tests are specified by the customer to test that the overall

system is functioning as expected. All tests must be successfully completed before

software is released.

 Refactoring - any duplicate or unnecessary code generated in a coding session is

eliminated, fostering the utilisation of re-usable code.

 Pair programming - all code is written by two programmers working together on one

computer, with the aim of producing high quality code. One person will focus on

coding while the other will focus on strategic issues.

 Collective code ownership - no one programmer "owns" a code module. Any

developer can be required to work on any part of the code at any time.

 Continuous integration - all changes are integrated into the system daily. Integration

testing must be successful carried out before further integration occurs.

 Sustainable pace - developers are expected to be able to go home on time. Excessive

overtime is taken as a sign that something is wrong with the development process.

 Whole team - the development team has continuous access to a customer

representative.

 Coding standards - all programmers are expected to write code to the same standards.

Ideally, it should not be possible to tell which member of the development team has

written a code module simply by examining the code.

33

SMD Ejaz
Assistant Professor
AITS, Rajampeta
WhatsApp: 9133915846

Extreme Programming may be appropriate for relatively small-scale projects where the

requirements change rapidly, or where some initial development is needed before previously

unforeseen implementation problems can be determined. It may not work so well for larger

projects, or projects where the requirements are unlikely to change.

Computer-Aided-Software-Engineering (CASE)

CASE stands for Computer Aided Software Engineering. It means, development and

maintenance of software projects with help of various automated software tools.

CASE Tools

CASE tools are set of software application programs, which are used to automate SDLC

activities. CASE tools are used by software project managers, analysts and engineers to

develop software system.

There are number of CASE tools available to simplify various stages of Software

Development Life Cycle such as Analysis tools, Design tools, Project management tools,

Database Management tools, Documentation tools are to name a few.

Use of CASE tools accelerates the development of project to produce desired result and helps

to uncover flaws before moving ahead with next stage in software development.

Components of CASE Tools

CASE tools can be broadly divided into the following parts based on their use at a particular

SDLC stage:

 Central Repository - CASE tools require a central repository, which can serve as a

source of common, integrated and consistent information. Central repository is a

central place of storage where product specifications, requirement documents, related

reports and diagrams, other useful information regarding management is stored.

Central repository also serves as data dictionary.

Figure 9 Components of CASE Tools

34

SMD Ejaz
Assistant Professor
AITS, Rajampeta
WhatsApp: 9133915846

 Upper Case Tools - Upper CASE tools are used in planning, analysis and design

stages of SDLC.

 Lower Case Tools - Lower CASE tools are used in implementation, testing and

maintenance.

 Integrated Case Tools - Integrated CASE tools are helpful in all the stages of SDLC,

from Requirement gathering to Testing and documentation.

CASE tools can be grouped together if they have similar functionality, process activities and

capability of getting integrated with other tools.

Scope of Case Tools

The scope of CASE tools goes throughout the SDLC.

Case Tools Types

Now we briefly go through various CASE tools

Diagram tools

These tools are used to represent system components, data and control flow among various

software components and system structure in a graphical form. For example, Flow Chart

Maker tool for creating state-of-the-art flowcharts.

Process Modeling Tools

Process modeling is method to create software process model, which is used to develop the

software. Process modeling tools help the managers to choose a process model or modify it as

per the requirement of software product. For example, EPF Composer

Project Management Tools

35

SMD Ejaz
Assistant Professor
AITS, Rajampeta
WhatsApp: 9133915846

These tools are used for project planning, cost and effort estimation, project scheduling and

resource planning. Managers have to strictly comply project execution with every mentioned

step in software project management. Project management tools help in storing and sharing

project information in real-time throughout the organization. For example, Creative Pro

Office, Trac Project, Basecamp.

Documentation Tools

Documentation in a software project starts prior to the software process, goes throughout all

phases of SDLC and after the completion of the project.

Documentation tools generate documents for technical users and end users. Technical users

are mostly in-house professionals of the development team who refer to system manual,

reference manual, training manual, installation manuals etc. The end user documents describe

the functioning and how-to of the system such as user manual. For example, Doxygen,

DrExplain, Adobe RoboHelp for documentation.

Analysis Tools

These tools help to gather requirements, automatically check for any inconsistency,

inaccuracy in the diagrams, data redundancies or erroneous omissions. For example, Accept

360, Accompa, Case Complete for requirement analysis, Visible Analyst for total analysis.

Design Tools

These tools help software designers to design the block structure of the software, which may

further be broken down in smaller modules using refinement techniques. These tools provide

detailing of each module and interconnections among modules. For example, Animated

Software Design

Configuration Management Tools

An instance of software is released under one version. Configuration Management tools deal

with –

 Version and revision management

 Baseline configuration management

 Change control management

CASE tools help in this by automatic tracking, version management and release management.

For example, Fossil, Git, Accu REV.

Change Control Tools

These tools are considered as a part of configuration management tools. They deal with

changes made to the software after its baseline is fixed or when the software is first released.

CASE tools automate change tracking, file management, code management and more. It also

helps in enforcing change policy of the organization.

36

SMD Ejaz
Assistant Professor
AITS, Rajampeta
WhatsApp: 9133915846

Programming Tools

These tools consist of programming environments like IDE (Integrated Development

Environment), in-built modules library and simulation tools. These tools provide

comprehensive aid in building software product and include features for simulation and

testing. For example, Cscope to search code in C, Eclipse.

Prototyping Tools

Software prototype is simulated version of the intended software product. Prototype provides

initial look and feel of the product and simulates few aspects of actual product.

Prototyping CASE tools essentially come with graphical libraries. They can create hardware

independent user interfaces and design. These tools help us to build rapid prototypes based on

existing information. In addition, they provide simulation of software prototype. For

example, Serena prototype composer, Mockup Builder.

Web Development Tools

These tools assist in designing web pages with all allied elements like forms, text, script,

graphic and so on. Web tools also provide live preview of what is being developed and how

will it look after completion. For example, Fontello, Adobe Edge Inspect, Foundation 3,

Brackets.

Quality Assurance Tools

Quality assurance in a software organization is monitoring the engineering process and

methods adopted to develop the software product in order to ensure conformance of quality

as per organization standards. QA tools consist of configuration and change control tools and

software testing tools. For example, SoapTest, AppsWatch, JMeter.

Maintenance Tools

Software maintenance includes modifications in the software product after it is delivered.

Automatic logging and error reporting techniques, automatic error ticket generation and root

cause Analysis are few CASE tools, which help software organization in maintenance phase

of SDLC. For example, Bugzilla for defect tracking, HP Quality Center.

ALTERNATIVE SYSTEMS-BUILDING APPROACHES

Systems differ in terms of their size and technological complexity and in terms of the

organizational problems they are meant to solve. A number of systems-building approaches

have been developed to deal with these differences. This section describes these alternative

methods:

1. The traditional systems life cycle,

2. prototyping,

3. end-user development,

4. application software packages

37

SMD Ejaz
Assistant Professor
AITS, Rajampeta
WhatsApp: 9133915846

5. outsourcing.

Traditional Systems Life Cycle

The systems life cycle is the oldest method for building information systems. The life cycle

methodology is a phased approach to building a system, dividing systems development into

formal stages. Systems development specialists have different opinions on how to partition

the systems-building stages, but they roughly correspond to the stages of systems

development that we have just described.

The systems life cycle methodology maintains a very formal division of labor between end

users and information systems specialists. Technical specialists, such as system analysts and

programmers, are responsible for much of the systems analysis, design, and implementation

work; end users are limited to providing information requirements and reviewing the

technical staff ’s work. The life cycle also emphasizes formal specifications and paperwork,

so many documents are generated during the course of a systems project.

The systems life cycle is still used for building large complex systems that require a rigorous

and formal requirements analysis, predefined specifications, and tight controls over the

systems-building process. However, the systems life cycle approach can be costly, time

consuming, and inflexible. Although systems builders can go back and forth among stages in

the life cycle, the systems life cycle is predominantly a “waterfall” approach in which tasks in

one stage are completed before work for the next stage begins. Activities can be repeated, but

volumes of new documents must be generated and steps retraced if requirements and

specifications need to be revised. This encourages freezing of specifications relatively early

in the development process. The life cycle approach is also not suitable for many small

desktop systems, which tend to be less structured and more individualized.

Prototyping

Proto-typing consists of building an experimental system rapidly and inexpensively for end

users to evaluate. By interacting with the prototype, users can get a better idea of their

information requirements. The prototype endorsed by the users can be used as a template to

create the final system.

The prototype is a working version of an information system or part of the system, but is

meant to be only a preliminary model. Once operational, the prototype will be further refined

until it conforms precisely to users’ requirements. Once the design has been finalized, the

prototype can be converted to a polished production system.

The process of building a preliminary design, trying it out, refining it, and trying again has

been called an iterative process of systems development because the steps required to build a

system can be repeated over and over again. Prototyping is more explicitly iterative than the

conventional life cycle, and it actively promotes system design changes. It has been said that

38

SMD Ejaz
Assistant Professor
AITS, Rajampeta
WhatsApp: 9133915846

prototyping replaces unplanned rework with planned iteration, with each version more

accurately reflecting users’ requirements.

STEPS IN PROTOTYPING

Figure 14-11 shows a four-step model of the prototyping process, which consists of the

following:

1. Step 1: Identify the user’s basic requirements. The system designer (usually an

information systems specialist) works with the user only long enough to capture the

user’s basic information needs.

2. Step 2: Develop an initial prototype. The system designer creates a working prototype

quickly, using tools for rapidly generating software.

3. Step 3: Use the prototype. The user is encouraged to work with the system to

determine how well the prototype meets his or her needs and to make suggestions for

improving the prototype.

4. Step 4: Revise and enhance the prototype. The system builder notes all changes the

user requests and refines the prototype accordingly. After the prototype has been

revised, the cycle returns to step 3. Steps 3 and 4 are repeated until the user is

satisfied.

Figure 10 STEPS IN PROTOTYPING

39

SMD Ejaz
Assistant Professor
AITS, Rajampeta
WhatsApp: 9133915846

The process of developing a prototype can be broken down into four steps. Because a

prototype can be developed quickly and inexpensively, systems builders can go through

several iterations, repeating steps 3 and 4, to refine and enhance the prototype before arriving

at the final operational one.

When no more iterations are required, the approved prototype then becomes an operational

prototype that furnishes the final specifications for the application. Sometimes the prototype

is adopted as the production version of the system.

ADVANTAGES AND DISADVANTAGES OF PROTOTYPING

Prototyping is most useful when there is some uncertainty about requirements or design

solutions. Prototyping is especially useful in designing an information system’s end-user

interface (the part of the system with which end users interact, such as online display and

data-entry screens, reports, or Web pages). Because prototyping encourages intense end-user

involvement throughout the systems development life cycle, it is more likely to produce

systems that fulfil user requirements.

However, rapid prototyping can gloss over essential steps in systems development. If the

completed prototype works reasonably well, management may not see the need for

reprogramming, redesign, or full documentation and testing to build a polished production

system. Some of these hastily constructed systems may not easily accommodate large

quantities of data or a large number of users in a production environment.

End-User Development

Some types of information systems can be developed by end users with little or no formal

assistance from technical specialists. This phenomenon is called end-user development. A

series of software tools categorized as fourth-generation languages makes this possible.

Fourth-generation languages are software tools that enable end users to create reports or

develop software applications with minimal or no technical assistance. Some of these fourth-

generation tools also enhance professional programmers’ productivity.

Fourth-generation languages tend to be nonprocedural, or less procedural, than conventional

programming languages. Procedural languages require specification of the sequence of steps,

or procedures, that tell the computer what to do and how to do it. Nonprocedural languages

need only specify what has to be accomplished rather than provide details about how to carry

out the task.

Table 4 shows that there are seven categories of fourth-generation languages: PC software

tools, query languages, report generators, graphics languages, application generators,

application software packages, and very high-level programming languages. The table shows

the tools ordered in terms of ease of use by nonprogramming end users. End users are most

likely to work with PC software tools and query languages. Query languages are software

tools that provide immediate online answers to requests for information that are not

40

SMD Ejaz
Assistant Professor
AITS, Rajampeta
WhatsApp: 9133915846

predefined, such as “Who are the highest-performing sales representatives?” Query languages

are often tied to data management software and to database management systems

Figure 11 Categories of Fourth-Generation Languages

On the whole, end-user-developed systems can be completed more rapidly than those

developed through the conventional systems life cycle. Allowing users to specify their own

business needs improves requirements gathering and often leads to a higher level of user

involvement and satisfaction with the system. However, fourth-generation tools still cannot

replace conventional tools for some business applications because they cannot easily handle

the processing of large numbers of transactions or applications with extensive procedural

logic and updating requirements.

End-user computing also poses organizational risks because it occurs outside of traditional

mechanisms for information systems management and control. When systems are created

rapidly, without a formal development methodology, testing and documentation may be

inadequate. Control over data can be lost in systems outside the traditional information

systems department. To help organizations maximize the benefits of end-user applications

development, management should control the development of end-user applications by

requiring cost justification of end-user information system projects and by establishing

hardware, software, and quality standards for user-developed applications.

Application Software Packages and Outsourcing

The software for most systems today is not developed in-house but is purchased from

41

SMD Ejaz
Assistant Professor
AITS, Rajampeta
WhatsApp: 9133915846

external sources. Firms can rent the software from an application service provider, they can

purchase a software package from a commercial vendor, or they can have a custom

application developed by an outside outsourcing firm.

The Window on Technology illustrates a company that is using multiple approaches to obtain

better systems. Elie Tahari Limited is using software packages for business transaction

systems and for end-user computing tools. The company outsourced the cleansing of its retail

point-of-sale data to another company that could do the work more efficiently than Tahari’s

in-house staff. By combining all of these approaches, Tahari came up with a powerful set of

systems and tools that increased operational efficiency and the ability to take advantage of

market trends while allowing the firm to concentrate on its core competency—fashion design.

APPLICATION SOFTWARE PACKAGES

During the past several decades, many systems have been built on an application software

package foundation. Many applications are common to all business organizations—for

example, payroll, accounts receivable, general ledger, or inventory control. For such

universal functions with standard processes that do not change a great deal over time, a

generalized system will fulfil the requirements of many organizations.

If a software package can fulfil most of an organization’s requirements, the company does

not have to write its own software. The company can save time and money by using the

prewritten, predesigned, pretested software programs from the package. Package vendors

supply much of the ongoing maintenance and support for the system, including enhancements

to keep the system in line with ongoing technical and business developments.

If an organization has unique requirements that the package does not address, many packages

include capabilities for customization. Customization features allow a software package to be

modified to meet an organization’s unique requirements without destroying the integrity of

the package software. If a great deal of customization is required, additional programming

and customization work may become so expensive and time consuming that they negate

many of the advantages of software packages.

Figure 4 shows how package costs in relation to total implementation costs rise with the

degree of customization. The initial purchase price of the package can be deceptive because

of these hidden implementation costs. If the vendor releases new versions of the package, the

overall costs of customization will be magnified because these changes will need to be

synchronized with future versions of the software.

As the number of modifications to a software package rise, so does the cost of implementing

the package. Savings promised by the package can be whittled away by excessive changes.

 When a system is developed using an application software package, systems analysis will

include a package evaluation effort. The most important evaluation criteria are the functions

42

SMD Ejaz
Assistant Professor
AITS, Rajampeta
WhatsApp: 9133915846

provided by the package, flexibility, user friendliness, hardware and software resources,

database requirements, installation and maintenance efforts, documentation, vendor quality,

and cost. The package evaluation process often is based on a Request for Proposal (RFP),

which is a detailed list of questions submitted to packaged-software vendors.

When a software package solution is selected, the organization no longer has total control

over the system design process. Instead of tailoring the system design specifications directly

to user requirements, the design effort will consist of trying to mould user requirements to

conform to the features of the package. If the organization’s requirements conflict with the

way the package works and the package cannot be customized, the organization will have to

adapt to the package and change its procedures. Even if the organization’s business processes

seem compatible with those supported by a software package, the package may be too

constraining if these business processes are continually changing (Prahalad and Krishnan,

2002).

OUTSOURCING

If a firm does not want to use its internal resources to build or operate information systems, it

can outsource the work to an external organization that specializes in providing these

services. Application service providers (ASPs), which we describe in Chapter 6, are one form

of outsourcing. Subscribing companies would use the software and computer hardware

provided by the ASP as the technical platform for their systems. In another form of

outsourcing, a company could hire an external vendor to design and create the software for its

system, but that company would operate the system on its own computers.

Outsourcing has become popular because some organizations perceive it as providing more

value than an in-house computer centre or information systems staff. The provider of

outsourcing services benefits from economies of scale and complementary core competencies

that would be difficult for a firm that does not specialize in information technology services

to replicate.

The vendor’s specialized knowledge and skills can be shared with many different customers,

and the experience of working with so many information systems projects further enhance the

vendor’s expertise. Outsourcing enables a company with fluctuating needs for computer

processing to pay for only what it uses rather than build its own computer centre, which

would be underutilized when there is no peak load. Some firms outsource because their

internal information systems staff cannot keep pace with technological change or innovative

business practices or because they want to free up scarce and costly talent for activities with

higher paybacks.

Not all organizations benefit from outsourcing, and the disadvantages of outsourcing can

create serious problems for organizations if they are not well understood and managed. Many

firms underestimate costs for identifying and evaluating vendors of information technology

services, for transitioning to a new vendor, and for monitoring vendors to make sure they are

43

SMD Ejaz
Assistant Professor
AITS, Rajampeta
WhatsApp: 9133915846

fulfilling their contractual obligations. These hidden costs can easily undercut anticipated

benefits from outsourcing. When a firm allocates the responsibility for developing and

operating its information systems to another organization, it can lose control over its

information systems function. If the organization lacks the expertise to negotiate a sound

contract, the firm’s dependency on the vendor could result in high costs or loss of control

over technological direction

Firms should be especially cautious when using an outsourcer to develop or to operate

applications that give it some type of competitive advantage. A firm is most likely to benefit

from outsourcing if it understands exactly how the outsourcing vendor will provide value and

can manage the vendor relationship using an appropriate outsourcing strategy.

Table 14-6 compares the advantages and disadvantages of each of the systems-building

alternatives.

Figure 12 Comparison of Systems-Development Approaches

The Window on Organizations describes how some financial services firms deal with the

issue of selecting systems-building alternatives. Some firms opt to purchase the technology

for new wealth management systems from outside vendors because they believe their

44

SMD Ejaz
Assistant Professor
AITS, Rajampeta
WhatsApp: 9133915846

strategic advantage lays in their knowledge of clients and investment selection. Other firms

believe that the technology is a source of competitive differentiation as well and choose to

build their systems in-house.

